KUVEMPU UNIVERSITY DEPARTMENT OF P.G.STUDIES & RESEARCH IN ELECTRONICS

PROCEEDINGS OF PG B O S MEETING IN ELECTRONICS

The Meeting of the UG Board of Studies in Electronics was held on 28th June 2024 (Friday) at 11.00 A.M. in the Dept. of UG Studies & Research in Electronics, Jnana Sahyadri, Shankaraghatta.

MEMBERS PRESENT:

1 Dr. Madhuri.G.R, Assistant Professor, Dept. of Electronics, Kuvempu University, Jnanasahyadri, Shankaraghatta-577451.	Chairman
 Dr. Manjunath Reddy Associate Professor Smt. Saraladevi Satishchandra Agarwal, Govt. First Grade College, Bellary. 	Member
 Dr. M. S. Sethsandi Asst. Professor Dept. of Electronics, P.C. Jabin College, Hubballi. 	Member
 4. Mr. Umesha Associate Professor Dept. of Electronics, DVS College Science, Shimoga 	Member

The Board resolved the following:

Board has Discussed and approved the UG Syllabus in Electronics according to the SEP guidelines for the academic year 2024-25.

Note: Due to personal emergency, Dr. B. N. Jagadale is unable to attend the meeting. Meeting is presided by Dr. Madhuri G R.

Meeting was concluded with vote of thanks

KUVEMPU NIVERSITY BOARD – ELECTRONICS UG SYLLABUS 2024-25

SEM	TITLE	UNIT	THEORY TOPICS	PRACTICAL TOPICS	
	ELECTRONIC	1	AC. DC CIRCUIT AND CIRCUIT THEOREMS		
ct	DEVICES AND	2	SEMI CONDUCTOR DEVICE AND ITS APPLICATION		
1 st		3	TRANSISTOR, FFT, MOSEFT		
		4	SINGLE STAGE AMPLIFIER , POWER ELECTRONICS		
	ELECTRONIC	1	MULTISTAGE AMPLIFIER AND POWER AMPLIFIER		
2 nd	CIRCUITS AND	2	TUNED AND FEED BACK AMPLIFIER	ELECTRONIC CIRCUITS AND	
_	APPLICATIONS	3	OSCILLATOR AND MULTIVIBRATOR	APPLICATIONS LAB	
		4	OPAMP AND ITS APPLICATIONS		
	DIGITAI	1	DIGITAL ELECTRONICS EUNDAMENTALS		
	FLECTRONICS	2		DIGITAL ELECTRONICS LAB	
3 ^{ra}		2			
		4			
		5	BASIC ELECTRONICS AND COMPLITERS (OPEN ELECTIVE)		
	COMPUTER	1	COMPUTER FUNDAMENTALS		
-th	FUNDAMENTALS	2	C PROGRAMMING CONCEPTS AND C OPERATOR		
4	AND C	3	EXPRESSIONS AND CONTROL STRUCTURES		
	PROGRAMMING	4	ARRAYS, USER DEFINED FUNCTIONS AND STRUCTURES		
		5	APPLICATIONS OF ELECTRONICS (OPEN ELECTIVE)		
	MICRO	1	INTRODUCTION TO 8051 ARCHITECTURE		
-th	CONTROLLER	2	8051 INSTRUCTION SET AND 8051 PROGRAMMING	MICRO CONTROLLER LAB	
5	AND	3	TIMERS / COUNTERS AND INTERRUPTS		
	FMBFDDFD	4	SERIAL I/O AND EMBEDDED SYSTEM		
	SYSTEM				
	ADVANCED	1	ANALOG COMMUNICATION		
6 th	COMMUNICAT	2	DIGITAL COMMUNICATION		
	ION	3	RADAR, SATELLITE COMMUNCATION	PROJECT	
		4	MOBILE COMMUNCATION		

Date: 28.06.2024

MODEL SYLLABUS FOR B.Sc. ELECTRONICS, SEMESTERS I AND II

2024-25

SEMESTER: I

Course Code		Course Title	ELECTRONIC DEVICES AND CIRCUITS
Course Credits	03	Hour of Teaching / Week	03
Total Contact Hours	48	Formative Assessment Marks	20
Exam Marks	80	Exam Duration	3 Hours

Course Content

	Content	Hours
UNIT – 1	AC, DC CIRCUIT AND CIRCUIT THEOREMS	
AC - AC applied to Series RC and RL circuits: Impedance of series RC & RL circuits.		
DC analysis of RL &	RC Series circuits – theory (charging and discharging)	
RLC circuits - AC ana	alysis of RLC series and parallel Resonant Circuits.	
Network Theorems: H	KCL,KVL, Thevenin's and Maximum Power Transfer theorem	
UNIT – 2	SEMI CONDUCTOR DEVICE AND ITS APPLICATION	
Semi conductor theo	ry: Types, PN junction diode - theory, characteristics. Zener diode -	12
theory, characteristics		
Rectifiers - Half wave	e and Full wave (centre tap and bridge) rectifiers, expressions for output	
voltage, ripple factor a	nd efficiency	
Filters – types, shunt c	capacitor filter.	
Voltage regulator: B	lock diagram of regulated power supply, Line and Load regulation,	
Zener diode as voltage regulator.		
Wave shaping circuit	s: Clippers and clampers	
UNIT – 3	TRANSISTOR, FET, MOSFET	
Bipolar Junction Tr	ransistor: Construction, types, CE, CB and CC configurations. VI	12
characteristics of a transistor in CE mode, Regions of operation, Current gains and their inter-		
relations.JFET-Types	, n-channel JFET – construction, working and I-V characteristics. JFET	
parameters and their re	elationships.	
MOSFET:E – MOSFE	ET, Construction, working, drain and transfer characteristics.	
UNIT – 4	SINGLE STAGE AMPLIFIER , POWER ELECTRONICS	
Single stage amplifie	r : Transistor biasing - types. DC load line, Operating point, Thermal	12
runaway, stability and	stability factor. Fixed and voltage divider biasing – expression for Q-	
point.Transistor as a sy	vitch – circuit and working. Darlington pair and its applications	
UJT - construction, working, equivalent circuit and I-V characteristics and applications.		
SCR- construction, we	orking, equivalent circuit and I-V characteristics and applications.	

Note: Sufficient number of numerical problems should be solved in each unit.

Reference Books:

- 1. Robert L Boylestad, "Introductory circuit analysis", 5th edition., Universal Book
- 2. R.S.Sedha, "A Text book of Applied Electronics", 7th edition., S. Chand and Company
- 3. A.P. Malvino, "Principles of Electronics", 7th edition .TMH, 2011.
- 4. Electronic devices and circuit theory by Boylestad, Robert Nashelsky
- 5. David A. Bell " Electronic Devices and Circuits", 5th Edition, Oxford Uni. Press, 2015
- 6. S. A. Nasar," Electrical Circuits", Schaum's outline series, Tata McGraw Hill, 2004
- 7. J. Millman and C. C. Halkias, "Integrated Electronics", Tata McGraw Hill, 2001
- 8. A.S. Sedra, K.C. Smith, A.N. Chandorkar "Microelectronic circuits", 6th Edition

Course Code		Course Title	ELECTRONIC DEVICES AND CIRCUITS LAB
Course Credits	02	Hour / Week	04
Total Contact Hours		Formative Assessment Marks	10
Exam Marks	40	Exam Duration	3 Hours

Lab Content

	Minimum of TEN Experiments to be performed
1	Study of Series and Parallel RC circuits - determination of impedance
2	Study of Series RC circuits - determination of time constant during charging and discharging
3	Study of Series and Parallel Resonance circuits - determination of its Resonant frequency
5	Bandwidth and Quality Factor
4	Verification of Thevenin's theorem
5	Maximum Power Transfer Theorem
6	Study of the I-V Characteristics of (a) p-n junction Diode, and (b) Zener diode.
7	Study of Half wave rectifier -determination of ripple factor
8	Study of full wave bridge rectifier without and with shunt capacitor filter - determination of
0	ripple factor
9	Study of Zener diode as a Voltage Regulator - Load and line regulation.
10	Study of Clipping and Clamping circuits(Positive and negative).
11	Study of Transistor characteristics in CE configuration – determination Ri, Ro and β .
12	Single stage CE amplifier study of frequency response curve and bandwidth
13	Study of JFET characteristics – determination of parameters.
14	UJT as relaxation oscillator
15	Study of SCR Characteristics

SEMESTER: II

Course Code		Course Title	ELECTRONIC CIRCUITS AND APPLICATIONS
Course Credits	03	Hour of Teaching / Week	03
Total Contact Hours	48	Formative Assessment Marks	20
Exam Marks	80	Exam Duration	3 Hours

Course Content

Content Ho	lours	
UNIT – 1 MULTISTAGE AMPLIFIER AND POWER AMPLIFIER		
Multistage Amplifier: Need, Methods of coupling- circuit analysis of RC coupled	12	
amplifier, Frequency response and applications.		
Power Amplifier: Performance quantifies of power amplifier classification, circuit		
operation of different type, expression of efficiency, comparison and mention of		
applications.		
UNIT – 2 TUNED AND FEED BACK AMPLIFIER		
Tuned Amplifier: Types, circuit operation single and double stage amplifiers,	12	
Frequency response, applications.		
Feedback Amplifier: Principle of feedback, different feedback techniques,		
Comparison between the types. Negative feedback: expression for gain stability,		
distortion and bandwidth. Mention of applications		
UNIT – 3 OSCILLATOR AND MULTIVIBRATOR		
Oscillators: Classification, oscillatory circuit, condition for sustained Oscillation,	12	
circuit operation of different oscillator, expression frequency of oscillation,		
comparisons, applications.		
Multivibrators: Types, circuit operation of different multivibrators, expression for		
frequency, comparisons & applications		
UNIT – 4 OPAMP AND ITS APPLICATIONS		
OPAMP : Introduction, block diagram, pin configurations of IC 741, circuit symbol.	12	
Inverting & non inverting amplifier with feedback- expression for closed loop		
voltage gain.		
OP AMP applications: Voltage follower circuit. Current to voltage converter,		
differential amplifier, Adder, subtractor.		
Integrator, Differentiator: circuit operation, derivation of output response.		
High pass circuit, operation, derivation for cut-off frequency. Basic comparator		
using OP AMP.		

Note: Sufficient number of numerical problems should be solved in each unit.

Reference Books:

- 1. Robert L Boylestad, "Introductory circuit analysis", 5th edition., Universal Book
- 2. Op-Amps and Linear IC's R.A. Gayakwad, , Pearson Education (2003)
- 3. Basic Electronics(solid state)- B.L.Theraja S Chand & Co
- 4. Electronic devices and circuits G.K.Mithal, Khana publishers, New Delhi
- 5. Integrated Circuits Deboo and Burrous McGraw Hill.
- 6. Linear ICs D. Roy Choudhury, Sherif, Jain Wiley Eastern.
- 7. Integrated Circuits K.R. Botkar Khanna Publishers.

Course Code		Course Title	ELECTRONIC CIRCUITS AND APPLICATIONS LAB
Course Credits	02	Hour / Week	04
Total Contact Hours		Formative Assessment Marks	10
Exam Marks	40	Exam Duration	3 Hours

Lab Content

	Minimum of TEN Experiments to be performed
1	Single stage RC coupled Amplifier – frequency response and determination of bandwidth
2	Double stage RC coupled Amplifier – frequency response and determination of bandwidth
3	Tuned Amplifier – frequency response and determination of resonant frequency and bandwidth
4	Feedback Amplifier – frequency response and determination of bandwidth
5	Collpitts Oscillator – determination of frequency of oscillation
6	Hartely Oscillator – determination of frequency of oscillation
7	RC phase shift Oscillator – determination of frequency of oscillation
8	Astable Multivibrator – determination of frequency of oscillation
9	Determine the Slew rate using OPAMP
10	OPAMP as Inverting & Non-inverting amplifier determination of voltage gain of the amplifier.
11	OPAMP as Inverting amplifier - frequency response and determination of bandwidth.
12	Op amp as Integrator/differentiator
13	OPAMP as Wein bridge oscillator
14	OPAMP as voltage to current & current to voltage converter
15	OPAMP as Low pass filter and High pass filter
16	OP AMP as comparator